<p></p><p></p><h1><p class="p1"><span class="s1">AutoECG: Automatic Detection of Cardiac Arrhythmia</span></p>


</h1>
<div class="row">
            <div class="col-lg-4 py-3 my-3">
                <div class="teaser">
                    <div>
                        <div class="text-primary text-lg teaser-text">
<span class="text-gray-dark">Task</span><br><p></p><p>With artificial intelligence methods, long recordings of 3 channel ECG must be analyzed for disturbances in heart rhythm. The goal is to support cardiologists in their diagnosis with this tool.</p><p></p><p></p></div>
                    </div>
                </div>
            </div>
            <div class="col-lg-4 py-3 my-3">
                <div class="teaser">
                    <div>
                        <div class="text-primary text-lg teaser-text">
<span class="text-gray-dark">Solution</span><br><p></p><p>The machine learning solution developed by PSIORI analyzes with Deep Learning hundreds of thousands of long (up to 72 hours) ECG recordings per year for heart rhythm disturbances. Additionally designed software by PSIORI, and tested by experienced cardiologists, detects suspicious areas and displays them visually, as well as suggests possible diagnoses.<br></p><p><br></p><p></p></div>
                    </div>
                </div>
            </div>
            <div class="col-lg-4 py-3 my-3">
                <div class="teaser">
                    <div>
                        <div class="text-primary text-lg teaser-text">
<span class="text-gray-dark">Benefit</span><br><p></p><p>Usually, these ECG recordings would take several hours of costly work by analysts to classify. With the new system, heart rhythm disturbances are recognized with precision and diagnosis suggestions are given to the cardiologists.<br></p><p></p><p></p></div></div></div></div></div><p></p>
Volker Voß Managing Sales Director
»I'd be pleased to advise you personally.«
x